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Our application to cyrptography

We wish to compute, via modular invariants, certain characteristics
of a moduli space of elliptic curves with a known number of points.
Currently the best method for computing these elliptic curves is by
writing down an arbitrary elliptic curve equation and checking by
hand whether it has the right number of points. The use of such
curves is instrumental in cryptographic applications, but this
discussion focuses only on the technique we will use to
parameterize such elliptic curves.



Modular curves: moduli spaces of elliptic curves with extra
information

The important part of elliptic curve theory for cyrptography is the
group structure on an elliptic curve depicted in the figure:

A modular curve is a moduli (parameter) space of equivalence
classes of elliptic curves equipped with some amount of
information about this group law.



What is a modular curve?

The action of the group

SL2(Z) = {γ =

(
a b
c d

)
: a, b, c , d ∈ Z, det γ = 1} on the

upper half of the complex plane H = {z ∈ C : =z ≥ 0} quotients
H into crudely speaking, a g -holed torus whose points are classes
of elliptic curves which share the same group structure. In
particular the congruence subgroup

Γ0(N) = {
(

a b
c d

)
: c ≡ 0 (mod N)} ⊂ SL2(Z)

is a covering space whose points are elliptic curves with a known
number of points. This is the space we wish on which we wish to
compute modular invariants.



Modular forms
For k ∈ Z, a function f : H → C is a modular form of weight k if

1. f is holomorphic on H and at ∞
and

2. for γ =

(
a b
c d

)
∈ SL2(Z) and z ∈ H we have that

f (γz) = f (
az + b

cz + d
) = (cz + d)k f (z).

Modular forms are a graded ring M(SL2(Z)) = ⊕∞1 Mk(SL2(Z))
with an ideal of forms called cusp forms denoted S(SL2(Z)) with
the analogous graded structure, and these definitions extend to
congruence subgroups in the obvious way.
If f ∈Mk(Γ) is a modular form of weight k for Γ ⊂ SL2(Z) a
congruence subgroup, f has a Fourier expansion

f (z) =
∑
N

an(f )e2πiz

and we say f is a cusp form if a0 = 0.



Modular invariants part 1

To write a canonical basis for the space of cusp forms is in general
a hard problem, but the solution to which gives modular invariants
which let parameterize a space of the kind of elliptic curves we are
concerned with.
We do this with the use of Hecke operators Tp on the space of
cusp forms in the following way:
for f (z) =

∑
N ane

2πiz ∈Mk(Γ0(N)), define

Tpf (z) =
∑
N

(apn + pk−1an/p)e2πiz .

Hecke operators are themselves a ring T(k,N), act on the space of
cusp forms Sk(Γ0(N)), and with some arithmetic we have an
isomorphism of algebras

T(k ,N)⊗Q ∼= Sk(Γ0(N),Q).



Modular Invariants part 2

We can use Sage to compute not only the Hecke algebra,
characteristic polynomials for operators Tn ∈ T(k ,N) but also
whether those polynomials are irreducible. We use this for the
follow construction:
With an isomorphism of fields

T(k,N) ∼= Sk(Γ0(N),Q) ∼= Q[Tn]/(a(x)),

where Tn ∈ T(k ,N) generates the Hecke algebra and a(x) is its
associated, irreducible, characteristic polynomial, we can compute
the Galois group over Q of this field extension.



Modular Invariants part 3: Galois

With the Eichler-Shimura relation, which gives us a
correspondence between Hecke operators and Galois
representations, and the identification above we get:

1. a finite Galois extension of Q with a basis (i.e. a friendly
number field)

2. elements of the Galois as matrices over that basis
and

3. the trace of the Galois representation for interesting Galois
elements

That allows us to determine the Hecke operator’s eigenvalues and
therefore the modular invariants of this operator. For really big
primes p we care about those Tp for cryptography.


